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1. Projective varieties

For 0 ≤ i ≤ n, let Ui = Pn
k − V (Xi) = {[X0 : · · · : Xn]|Xi 6= 0} . Sometimes Ui is

called a fundamental open set of Pn
k . We have a bijection

φi : An
k
∼−→ Ui

(y1, · · · , yn) 7→ [y1 : y2 : · · · : yi−1 : 1 : yi : · · · : yn].

The inverse φ−1
i is given by [x0 : · · · : xn] 7→ (x0/xi, · · · , xi−1/xi, xi+1/xi, · · · , xn/xi).

There is a precise sense in which the above map is an isomorphism. We will not
dwell on that at this point. Intuitively these identi�cations should be thought of
as charts as for manifolds. Note that Pn

k is covered by U0, · · · , Un. So we may say
that Pn

k is covered by n+ 1 copies of the n-dimensional a�ne space.
Let V ⊂ Pn

k be a projective algebraic set with homogeneous ideal I(V ). Then

φ−1
i (V ∩ Ui) ⊂ An

k is an a�ne algebraic set, with ideal

{f(Y1, · · · , Yi−1, 1, Yi, · · · , Yn)|f ∈ I(V )} .

We will abuse notation to denote this a�ne algebraic set also by V ∩Ui. Note that
since the Ui's cover Pn

k , the V ∩ Ui's cover V . We may say that V is covered by
n + 1 a�ne algebraic sets. Also note that if V is de�ned over k, then so is each
V ∩ Ui as an a�ne algebraic set in An

k .

Example 1.1. Consider V = V (X2 +Y 2−3Z2) ⊂ P3
k. V ∩UX = V (X2 +Y 2−3) ⊂

A2
k = {(x, y)} , V ∩ UY = V (X2 + 1− 3Z2) ⊂ A2

k = {(x, z)}.

Conversely, given an a�ne algebraic set V ⊂ An
k and an i, 0 ≤ i ≤ n, we can

produce a projective algebraic set, denoted by φi(V ), called the closure of φi(V ),
de�ned as follows. Firstly, for any polynomial f(Y1, · · ·Yn) in n variables, we can
produce a homogeneous polynomial f∗ in n+ 1 variables, de�ned by

f∗(X0, · · · , Xn) = Xdeg f
i f(X0/Xi, · · · , Xi−1/Xi, Xi+1/Xi, · · · , Xn/Xi).

We say f∗ is the homogenization of f by adding the i-th variable.

Example 1.2. Let f(X,Y, Z) = X2 + Y − Z3. We homogenize f by adding the
variable W . We have

f∗(X,Y, Z,W ) = W 3f(X/W,Y/W,Z/W ) = W 3(X2/W 2+Y/W−Z3/W 3) = X2W+YW 2−Z3.

Let I ′ be the homogeneous ideal of k̄[X0, · · · , Xn] generated by {f∗|f ∈ I(V )}.
We de�ne φi(V ) := V (I ′) ⊂ Pn

k .

Example 1.3. Consider φW : A3
k = {(x, y, z)} ∼−→ UW = P3

k,x,y,z,w − V (W ). Then

φW (V (X2 + Y − Z3)) = V (X2W + YW 2 − Z3).
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Proposition 1.4. (1) Let V ⊂ An
k be an a�ne algebraic variety. Then V ′ =

φi(V ) ⊂ Pn
k is a projective variety. We have V = V ′ ∩Ui, and V is de�ned

over k if and only if V ′ is de�ned over k.
(2) Let V ′ ⊂ Pn

k be a projective variety. Then V = V ′ ∩Ui is an a�ne variety.

Either V = ∅ or V ′ = φi(V ).

In this way we can uniquely associate a projective variety V ′ to an a�ne variety
V . We will often use this construction tacitly. We also call V ′ − V the points at
in�nity.

Example 1.5. Consider the a�ne varieties V1 = V (X2−Y 2− 1), V2 = V (X −Y ) ⊂
A2

k. We have V1 ∩ V2 = ∅. Consider φZ : A2
k → UZ ⊂ P2

k = {[X : Y : Z]}. We

have V ′1 = φZ(V1) = V (X2 − Y 2 − Z2), V ′2 = φZ(V2) = V (X − Y ) ⊂ P2
k. We

have V ′1 ∩ V ′2 = {[1 : 1 : 0]}. Note this point is not in UZ . This makes precise the
intuitive idea that V1 and V2 intersect at a point at in�nity. Moreover, we have
V ′1 ∩ UX = V (1− Y 2 − Z2), V ′2 ∩ UX = V (1− Y ). Thus in the Y − Z-a�ne space,
the intersection behaves the same as the intersection of a circle with a line tangent
to it.

Example 1.6. Suppose char k 6= 2. Let V = V (aX2+bXY +cY 2+dX+eY +f) ⊂ A2
k

be a non-degenerate conic curve (i.e. such that it is not a union of points and lines).
Consider its projective closure V ′ = V (aX2+bXY +cY 2+dXZ+eY Z+fZ2) ⊂ P3

k.
It can be shown that after a linear coordinate change (X,Y, Z) = (X ′, Y ′, Z ′)A,A ∈
GL3(k̄), we can put V ′ into the form V ′ = V (X2 +Y 2 +Z2). This is to say, all the
conic curves are equivalent as projective curves. In fact, as we will see later, they
are all isomorphic to P1. This is one of the �rst merits of projective geometry that
fascinated early 19th century geometers so much.

De�nition 1.7. Let V ⊂ Pn
k be a projective variety. Suppose V ∩ Ui 6= ∅. De�ne

dimV := dimV ∩ Ui

k̄(V ) := k̄(V ∩ Ui).

In case V is de�ned over k, de�ne

k(V ) = k(V ∩ Ui).

For any p ∈ V ∩ Ui, de�ne the local ring OV,p at p and smoothness of V at p
according to the a�ne variety V ∩ Ui.

Remark 1.8. The above de�nition does not depend on the choice of i, as long
as V ∩ Ui 6= ∅. Moreover, if we change the coordinates on Pn by an element in
GLn+1(k̄), the de�nition still stays invariant.

Example 1.9. Suppose char k 6= 2, 3. Consider V = V (Y 2Z − X3 + XZ2). It
is the projective closure of the a�ne curve Y 2 = X3 − X that we have seen is
nonsingular. Is V also nonsingular at the points at in�nity? Set Z = 0 in the
equation de�ning V , we see X3 = 0. Hence V has only one point at in�nity,
p = [0 : 1 : 0]. To study the smoothness of V , we look at V ∩ UY which contains
p. V ∩ UY = V (Z − X3 + XZ2) ⊂ A2

k,x,z. The partial X and Z derivatives of

Z −X3 +XZ2 are −3X2 +Z2 and 1 + 2XZ, resp. 1 + 2XZ does not vanish at the
point X = Z = 0. Hence V is nonsingular at [0 : 1 : 0].
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Example 1.10. Consider V = V (X2 +Y 2 +Z2) ⊂ P1
k. V ∩UZ = V (X2 +Y 2 + 1) ⊂

A2
k,x,y, V ∩ UY = V (X2 + 1 + Z2) ⊂ A2

k,x,z. k(V ∩ UZ) = k(X,Y )/(X2 + Y 2 +

1), k(V ∩ Uy) = k(X,Z)/(X2 + 1 + Z2). The natural isomorphism k(V ∩ UZ)
∼−→

k(V ∩ UY ) is given by �rst homogenizing and then dehomogenizing. For example,
given f(X,Y ) = X/Y 2 ∈ k(V ∩UZ), we get f(X/Z, Y/Z) = XZ/Y 2. Set g(X,Z) =
XZ/Y 2|Y =1 = XZ ∈ k(V ∩ Uy).

Let V ⊂ Pn
k be a projective variety de�ned over k. We can interpret the func-

tion �eld k(V ) as follows: The elements in k(V ) are rational functions in n + 1
variables of the form F = f(X0, · · · , Xn)/g(X0, · · · , Xn), g 6= 0, where f and g are
homogeneous polynomials of the same degree. Two elements f/g, f1/g1 are viewed
as the same if fg1− f1g ∈ I(V ) ⊂ k̄[X0, · · · , Xn]. We see that F de�nes a k-valued
function on V except where g vanishes. If p ∈ V − V (g), we say F is regular at p.
We see that F is regular at p if and only if F ∈ OV,p ⊂ k̄(V ).

Exercise 1.11. Let V ⊂ Pn
k be a projective variety. Let f : V → k̄ be a function

such that for all i, f |V ∩Ui
: V ∩ Ui → k̄ is given by an element in k̄[V ∩ Ui]. Show

that f has to be a constant function.

2. Maps between algebraic varieties

To get a complete theory of morphisms between algebraic varieties, we would
have to talk more about the Zariski topology, which fortunately (or unfortunately?)
is not required for our purpose. We are satis�ed to only use the notion of rational
maps between projective varieties.

Let V ⊂ Pn
k be a projective variety. Recall that a rational function F ∈ K̄(V )

can be interpreted as a quotient f/g of two homogeneous polynomials of the same
degree, and in particular it de�nes a k̄ valued function on V except where g vanishes.

De�nition 2.1. A rational map F : V → Pm
k is an element of Pm

k̄(V )
, i.e. it

is an m + 1 tuple [F0 : · · · : Fm], with Fi ∈ k̄(V ) not all zero, and we equate
[F0 : · · · : Fm] = [GF0 : · · · : GFm] for any G ∈ k̄(V )− {0} .

Let F = [F0 : · · · : Fm] : V → Pm
k be a rational map. Suppose p ∈ V is

such that all the Fi's are regular at p, then we can evaluate F at p to get a point
F (p) in Pm

k . Moreover, even if some or all of the Fi's are not regular at p, it may
happen that there exists G ∈ k̄(V )− {0} such that for each i, GFi is regular at p.
Also assume not all (GFi)(p) = 0. In this case, we may replace [F0 : · · · : Fn] by
[GF0 : · · · : GFm] and evaluate at p to get a point F (p) in Pm

k . We see that F (p) is
independent of the choice of G.

De�nition 2.2. Let F = [F0 : · · · : Fm] : V → Pm
k be a rational map. Let p ∈ V .

We say F is regular at p, if there exists G ∈ k̄(V )− {0} such that for each i, GFi

is regular at p, and not all (GFi)(p) = 0. In this case we de�ne F (p) ∈ Pm
k by

evaluating. If F is regular at all the points in V , we say F is a morphism.
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