LECTURE 10

YIHANG ZHU

1. Projective varieties

For $0 \leq i \leq n$, let $U_{i}=\mathbb{P}_{k}^{n}-V\left(X_{i}\right)=\left\{\left[X_{0}: \cdots: X_{n}\right] \mid X_{i} \neq 0\right\}$. Sometimes U_{i} is called a fundamental open set of \mathbb{P}_{k}^{n}. We have a bijection

$$
\begin{gathered}
\phi_{i}: \mathbb{A}_{k}^{n} \xrightarrow{\sim} U_{i} \\
\left(y_{1}, \cdots, y_{n}\right) \mapsto\left[y_{1}: y_{2}: \cdots: y_{i-1}: 1: y_{i}: \cdots: y_{n}\right]
\end{gathered}
$$

The inverse ϕ_{i}^{-1} is given by $\left[x_{0}: \cdots: x_{n}\right] \mapsto\left(x_{0} / x_{i}, \cdots, x_{i-1} / x_{i}, x_{i+1} / x_{i}, \cdots, x_{n} / x_{i}\right)$. There is a precise sense in which the above map is an isomorphism. We will not dwell on that at this point. Intuitively these identifications should be thought of as charts as for manifolds. Note that \mathbb{P}_{k}^{n} is covered by U_{0}, \cdots, U_{n}. So we may say that \mathbb{P}_{k}^{n} is covered by $n+1$ copies of the n-dimensional affine space.

Let $V \subset \mathbb{P}_{k}^{n}$ be a projective algebraic set with homogeneous ideal $I(V)$. Then $\phi_{i}^{-1}\left(V \cap U_{i}\right) \subset \mathbb{A}_{k}^{n}$ is an affine algebraic set, with ideal

$$
\left\{f\left(Y_{1}, \cdots, Y_{i-1}, 1, Y_{i}, \cdots, Y_{n}\right) \mid f \in I(V)\right\}
$$

We will abuse notation to denote this affine algebraic set also by $V \cap U_{i}$. Note that since the U_{i} 's cover \mathbb{P}_{k}^{n}, the $V \cap U_{i}$'s cover V. We may say that V is covered by $n+1$ affine algebraic sets. Also note that if V is defined over k, then so is each $V \cap U_{i}$ as an affine algebraic set in \mathbb{A}_{k}^{n}.
Example 1.1. Consider $V=V\left(X^{2}+Y^{2}-3 Z^{2}\right) \subset \mathbb{P}_{k}^{3} . V \cap U_{X}=V\left(X^{2}+Y^{2}-3\right) \subset$ $\mathbb{A}_{k}^{2}=\{(x, y)\}, V \cap U_{Y}=V\left(X^{2}+1-3 Z^{2}\right) \subset \mathbb{A}_{k}^{2}=\{(x, z)\}$.

Conversely, given an affine algebraic set $V \subset \mathbb{A}_{k}^{n}$ and an $i, 0 \leq i \leq n$, we can produce a projective algebraic set, denoted by $\overline{\phi_{i}(V)}$, called the closure of $\phi_{i}(V)$, defined as follows. Firstly, for any polynomial $f\left(Y_{1}, \cdots Y_{n}\right)$ in n variables, we can produce a homogeneous polynomial f^{*} in $n+1$ variables, defined by

$$
f^{*}\left(X_{0}, \cdots, X_{n}\right)=X_{i}^{\operatorname{deg} f} f\left(X_{0} / X_{i}, \cdots, X_{i-1} / X_{i}, X_{i+1} / X_{i}, \cdots, X_{n} / X_{i}\right)
$$

We say f^{*} is the homogenization of f by adding the i-th variable.
Example 1.2. Let $f(X, Y, Z)=X^{2}+Y-Z^{3}$. We homogenize f by adding the variable W. We have
$f^{*}(X, Y, Z, W)=W^{3} f(X / W, Y / W, Z / W)=W^{3}\left(X^{2} / W^{2}+Y / W-Z^{3} / W^{3}\right)=X^{2} W+Y W^{2}-Z^{3}$.
Let I^{\prime} be the homogeneous ideal of $\bar{k}\left[X_{0}, \cdots, X_{n}\right]$ generated by $\left\{f^{*} \mid f \in I(V)\right\}$. We define $\overline{\phi_{i}(V)}:=V\left(I^{\prime}\right) \subset \mathbb{P}_{k}^{n}$.
Example 1.3. Consider $\phi_{W}: \mathbb{A}_{k}^{3}=\{(x, y, z)\} \xrightarrow{\sim} U_{W}=\mathbb{P}_{k, x, y, z, w}^{3}-V(W)$. Then $\overline{\phi_{W}\left(V\left(X^{2}+Y-Z^{3}\right)\right)}=V\left(X^{2} W+Y W^{2}-Z^{3}\right)$.

Proposition 1.4. (1) Let $V \subset \mathbb{A}_{k}^{n}$ be an affine algebraic variety. Then $V^{\prime}=$ $\overline{\phi_{i}(V)} \subset \mathbb{P}_{k}^{n}$ is a projective variety. We have $V=V^{\prime} \cap U_{i}$, and V is defined over k if and only if V^{\prime} is defined over k.
(2) Let $V^{\prime} \subset \mathbb{P}_{k}^{n}$ be a projective variety. Then $V=V^{\prime} \cap U_{i}$ is an affine variety. Either $V=\emptyset$ or $V^{\prime}=\overline{\phi_{i}(V)}$.

In this way we can uniquely associate a projective variety V^{\prime} to an affine variety V. We will often use this construction tacitly. We also call $V^{\prime}-V$ the points at infinity.

Example 1.5. Consider the affine varieties $V_{1}=V\left(X^{2}-Y^{2}-1\right), V_{2}=V(X-Y) \subset$ \mathbb{A}_{k}^{2}. We have $V_{1} \cap V_{2}=\emptyset$. Consider $\phi_{Z}: \mathbb{A}_{k}^{2} \rightarrow U_{Z} \subset \mathbb{P}_{k}^{2}=\{[X: Y: Z]\}$. We have $V_{1}^{\prime}=\overline{\phi_{Z}\left(V_{1}\right)}=V\left(X^{2}-Y^{2}-Z^{2}\right), V_{2}^{\prime}=\overline{\phi_{Z}\left(V_{2}\right)}=V(X-Y) \subset \mathbb{P}_{k}^{2}$. We have $V_{1}^{\prime} \cap V_{2}^{\prime}=\{[1: 1: 0]\}$. Note this point is not in U_{Z}. This makes precise the intuitive idea that V_{1} and V_{2} intersect at a point at infinity. Moreover, we have $V_{1}^{\prime} \cap U_{X}=V\left(1-Y^{2}-Z^{2}\right), V_{2}^{\prime} \cap U_{X}=V(1-Y)$. Thus in the $Y-Z$-affine space, the intersection behaves the same as the intersection of a circle with a line tangent to it.

Example 1.6. Suppose char $k \neq 2$. Let $V=V\left(a X^{2}+b X Y+c Y^{2}+d X+e Y+f\right) \subset \mathbb{A}_{k}^{2}$ be a non-degenerate conic curve (i.e. such that it is not a union of points and lines). Consider its projective closure $V^{\prime}=V\left(a X^{2}+b X Y+c Y^{2}+d X Z+e Y Z+f Z^{2}\right) \subset \mathbb{P}_{k}^{3}$. It can be shown that after a linear coordinate change $(X, Y, Z)=\left(X^{\prime}, Y^{\prime}, Z^{\prime}\right) A, A \in$ $\mathrm{GL}_{3}(\bar{k})$, we can put V^{\prime} into the form $V^{\prime}=V\left(X^{2}+Y^{2}+Z^{2}\right)$. This is to say, all the conic curves are equivalent as projective curves. In fact, as we will see later, they are all isomorphic to \mathbb{P}^{1}. This is one of the first merits of projective geometry that fascinated early 19th century geometers so much.

Definition 1.7. Let $V \subset \mathbb{P}_{k}^{n}$ be a projective variety. Suppose $V \cap U_{i} \neq \emptyset$. Define

$$
\begin{aligned}
\operatorname{dim} V & :=\operatorname{dim} V \cap U_{i} \\
\bar{k}(V) & :=\bar{k}\left(V \cap U_{i}\right) .
\end{aligned}
$$

In case V is defined over k, define

$$
k(V)=k\left(V \cap U_{i}\right)
$$

For any $p \in V \cap U_{i}$, define the local ring $\mathcal{O}_{V, p}$ at p and smoothness of V at p according to the affine variety $V \cap U_{i}$.

Remark 1.8. The above definition does not depend on the choice of i, as long as $V \cap U_{i} \neq \emptyset$. Moreover, if we change the coordinates on \mathbb{P}^{n} by an element in $\mathrm{GL}_{n+1}(\bar{k})$, the definition still stays invariant.

Example 1.9. Suppose char $k \neq 2$, 3. Consider $V=V\left(Y^{2} Z-X^{3}+X Z^{2}\right)$. It is the projective closure of the affine curve $Y^{2}=X^{3}-X$ that we have seen is nonsingular. Is V also nonsingular at the points at infinity? Set $Z=0$ in the equation defining V, we see $X^{3}=0$. Hence V has only one point at infinity, $p=[0: 1: 0]$. To study the smoothness of V, we look at $V \cap U_{Y}$ which contains p. $\quad V \cap U_{Y}=V\left(Z-X^{3}+X Z^{2}\right) \subset \mathbb{A}_{k, x, z}^{2}$. The partial X and Z derivatives of $Z-X^{3}+X Z^{2}$ are $-3 X^{2}+Z^{2}$ and $1+2 X Z$, resp. $1+2 X Z$ does not vanish at the point $X=Z=0$. Hence V is nonsingular at [0:1:0].

Example 1.10. Consider $V=V\left(X^{2}+Y^{2}+Z^{2}\right) \subset \mathbb{P}_{k}^{1}$. $V \cap U_{Z}=V\left(X^{2}+Y^{2}+1\right) \subset$ $\mathbb{A}_{k, x, y}^{2}, V \cap U_{Y}=V\left(X^{2}+1+Z^{2}\right) \subset \mathbb{A}_{k, x, z}^{2} . k\left(V \cap U_{Z}\right)=k(X, Y) /\left(X^{2}+Y^{2}+\right.$ 1), $k\left(V \cap U_{y}\right)=k(X, Z) /\left(X^{2}+1+Z^{2}\right)$. The natural isomorphism $k\left(V \cap U_{Z}\right) \xrightarrow{\sim}$ $k\left(V \cap U_{Y}\right)$ is given by first homogenizing and then dehomogenizing. For example, given $f(X, Y)=X / Y^{2} \in k\left(V \cap U_{Z}\right)$, we get $f(X / Z, Y / Z)=X Z / Y^{2}$. Set $g(X, Z)=$ $X Z /\left.Y^{2}\right|_{Y=1}=X Z \in k\left(V \cap U_{y}\right)$.

Let $V \subset \mathbb{P}_{k}^{n}$ be a projective variety defined over k. We can interpret the function field $k(V)$ as follows: The elements in $k(V)$ are rational functions in $n+1$ variables of the form $F=f\left(X_{0}, \cdots, X_{n}\right) / g\left(X_{0}, \cdots, X_{n}\right), g \neq 0$, where f and g are homogeneous polynomials of the same degree. Two elements $f / g, f_{1} / g_{1}$ are viewed as the same if $f g_{1}-f_{1} g \in I(V) \subset \bar{k}\left[X_{0}, \cdots, X_{n}\right]$. We see that F defines a k-valued function on V except where g vanishes. If $p \in V-V(g)$, we say F is regular at p. We see that F is regular at p if and only if $F \in \mathcal{O}_{V, p} \subset \bar{k}(V)$.

Exercise 1.11. Let $V \subset \mathbb{P}_{k}^{n}$ be a projective variety. Let $f: V \rightarrow \bar{k}$ be a function such that for all $i,\left.f\right|_{V \cap U_{i}}: V \cap U_{i} \rightarrow \bar{k}$ is given by an element in $\bar{k}\left[V \cap U_{i}\right]$. Show that f has to be a constant function.

2. Maps between algebraic varieties

To get a complete theory of morphisms between algebraic varieties, we would have to talk more about the Zariski topology, which fortunately (or unfortunately?) is not required for our purpose. We are satisfied to only use the notion of rational maps between projective varieties.

Let $V \subset \mathbb{P}_{k}^{n}$ be a projective variety. Recall that a rational function $F \in \bar{K}(V)$ can be interpreted as a quotient f / g of two homogeneous polynomials of the same degree, and in particular it defines a \bar{k} valued function on V except where g vanishes.

Definition 2.1. A rational map $F: V \rightarrow \mathbb{P}_{k}^{m}$ is an element of $\mathbb{P}_{\bar{k}(V)}^{m}$, i.e. it is an $m+1$ tuple $\left[F_{0}: \cdots: F_{m}\right]$, with $F_{i} \in \bar{k}(V)$ not all zero, and we equate $\left[F_{0}: \cdots: F_{m}\right]=\left[G F_{0}: \cdots: G F_{m}\right]$ for any $G \in \bar{k}(V)-\{0\}$.

Let $F=\left[F_{0}: \cdots: F_{m}\right]: V \rightarrow \mathbb{P}_{k}^{m}$ be a rational map. Suppose $p \in V$ is such that all the F_{i} 's are regular at p, then we can evaluate F at p to get a point $F(p)$ in \mathbb{P}_{k}^{m}. Moreover, even if some or all of the F_{i} 's are not regular at p, it may happen that there exists $G \in \bar{k}(V)-\{0\}$ such that for each $i, G F_{i}$ is regular at p. Also assume not all $\left(G F_{i}\right)(p)=0$. In this case, we may replace $\left[F_{0}: \cdots: F_{n}\right]$ by $\left[G F_{0}: \cdots: G F_{m}\right]$ and evaluate at p to get a point $F(p)$ in \mathbb{P}_{k}^{m}. We see that $F(p)$ is independent of the choice of G.

Definition 2.2. Let $F=\left[F_{0}: \cdots: F_{m}\right]: V \rightarrow \mathbb{P}_{k}^{m}$ be a rational map. Let $p \in V$. We say F is regular at p, if there exists $G \in \bar{k}(V)-\{0\}$ such that for each $i, G F_{i}$ is regular at p, and not all $\left(G F_{i}\right)(p)=0$. In this case we define $F(p) \in \mathbb{P}_{k}^{m}$ by evaluating. If F is regular at all the points in V, we say F is a morphism.

